Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra. | −h6−2h5+1/2h4−1/2h3+2h2+h1 | g10+g8+2/3g6+2/3g1 | g9 | g14+4g11 | g13+4g7 | g17+2/3g15+2/3g12 | g18 | g16 | g20+g19 | g21 |
weight | 0 | 2ω1 | 2ω1 | 3ω1 | 3ω1 | 4ω1 | 5ω1 | 5ω1 | 6ω1 | 8ω1 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | 2ω1 | 2ω1 | 3ω1−14ψ | 3ω1+14ψ | 4ω1 | 5ω1−14ψ | 5ω1+14ψ | 6ω1 | 8ω1 |
Isotypical components + highest weight | V0 → (0, 0) | V2ω1 → (2, 0) | V3ω1−14ψ → (3, -14) | V3ω1+14ψ → (3, 14) | V4ω1 → (4, 0) | V5ω1−14ψ → (5, -14) | V5ω1+14ψ → (5, 14) | V6ω1 → (6, 0) | V8ω1 → (8, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 3ω1 ω1 −ω1 −3ω1 | 3ω1 ω1 −ω1 −3ω1 | 4ω1 2ω1 0 −2ω1 −4ω1 | 5ω1 3ω1 ω1 −ω1 −3ω1 −5ω1 | 5ω1 3ω1 ω1 −ω1 −3ω1 −5ω1 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 8ω1 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 −8ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 3ω1−14ψ ω1−14ψ −ω1−14ψ −3ω1−14ψ | 3ω1+14ψ ω1+14ψ −ω1+14ψ −3ω1+14ψ | 4ω1 2ω1 0 −2ω1 −4ω1 | 5ω1−14ψ 3ω1−14ψ ω1−14ψ −ω1−14ψ −3ω1−14ψ −5ω1−14ψ | 5ω1+14ψ 3ω1+14ψ ω1+14ψ −ω1+14ψ −3ω1+14ψ −5ω1+14ψ | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 8ω1 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 −8ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | M3ω1−14ψ⊕Mω1−14ψ⊕M−ω1−14ψ⊕M−3ω1−14ψ | M3ω1+14ψ⊕Mω1+14ψ⊕M−ω1+14ψ⊕M−3ω1+14ψ | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | M5ω1−14ψ⊕M3ω1−14ψ⊕Mω1−14ψ⊕M−ω1−14ψ⊕M−3ω1−14ψ⊕M−5ω1−14ψ | M5ω1+14ψ⊕M3ω1+14ψ⊕Mω1+14ψ⊕M−ω1+14ψ⊕M−3ω1+14ψ⊕M−5ω1+14ψ | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M8ω1⊕M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1⊕M−8ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M0 | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | M3ω1−14ψ⊕Mω1−14ψ⊕M−ω1−14ψ⊕M−3ω1−14ψ | M3ω1+14ψ⊕Mω1+14ψ⊕M−ω1+14ψ⊕M−3ω1+14ψ | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | M5ω1−14ψ⊕M3ω1−14ψ⊕Mω1−14ψ⊕M−ω1−14ψ⊕M−3ω1−14ψ⊕M−5ω1−14ψ | M5ω1+14ψ⊕M3ω1+14ψ⊕Mω1+14ψ⊕M−ω1+14ψ⊕M−3ω1+14ψ⊕M−5ω1+14ψ | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M8ω1⊕M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1⊕M−8ω1 |